Iteration #2 Results

Ecosystem Function – Water Quality Work
Group

Total Dissolved Gas Assessment

SRT Meeting – February 28, 2013 Mike Schneider USACE

Metrics/Evaluation Criteria

- Spillway releases entrain air bubbles that when exposed to hydrostatic pressures force the absorption of atmospheric gases into solution resulting in the supersaturation of total dissolved gases (TDG)
- Structural and operational attributes of dams have evolved with regards to characteristics of TDG exchange
- Spillway flows reset the TDG supersaturation while powerhouse flows generally retain the forebay TDG levels
- Fish acclimated to supersaturated waters that move into shallower environments may cause TDG to come out of solution forming bubbles in body tissues resulting in gas bubble trauma

Metrics/Evaluation Criteria

- TDG saturation in the forebay and tailwater of Dams on the Columbia and Snake Rivers, Headwater Projects
 - State water quality standards TDG 110% saturation
 - Fish passage projects rule adjustment or waiver April-August
 - 115% limit Forebay of Dam (12 hr average)
 - 120% limit in Tailwater of Dam (12 hr average)
 - 125% limit anywhere (1-2 hr average)
 - TDG Metrics summarize the duration in days of TDG saturation falling above a given threshold (110-140, in increments of 5 %)

Overview of the SYSTDG Modeling

- SYSTDG Model based on HydSim daily modulated flows 70 year simulation
- Empirically based model of TDG Saturation
 - Developed to simulate TDG exchange of real-time project operations
 - Used for decision support of system TDG management

Overview of the SYSTDG Modeling

- Geographic Domain
 - Columbia River from US Border to Bonneville Dam
 - Snake River from Anatone to confluence with CR
 - Dworshak and Clearwater River
 - Storage Project treated independently
 - Brownlee, Libby, Hungry Horse

Overview of the SYSTDG Modeling

- Modeling Inputs
 - Daily modulated flows from HydSim
 - Alternatives evaluated RC-CC, 2A-TC, 2B-TC, 2A-TT
 - Components E1 and E2
 - Boundary Conditions
 - US/Canada flow weighted average Keenleyside, Brilliant, Waneta
 - Small Tributary flows assumed TDG of 100%

Overview of the SYSTDG Modeling

- Models outputs
 - Daily Average TDG in Forebay, Spill, and Tailwater
 - Tailwater TDG flow weighted average of project releases
 - Residual TDG level arriving at next downstream dam

Assumptions

- Temperature impacts were not considered
- Extrapolation of TDG production model for high spillway flows

Approach to TDG Assessment

- Segment Basin Regions
 - Canadian Projects & US/Canada Border
 - Headwater Projects (DWR, HGH, LIB, BRN)
 - Middle Columbia (GCL-PRD)
 - Lower Snake (LWG-IHR)
 - Lower Columbia (MCN-BON)

Canadian Projects & US/Canada Border

- Summary of Alternatives at Brilliant & Waneta
 - Spill Volumes unchanged
 - TDG loadings unchanged
 - Assuming Waneta powerhouse expansion complete
- TDG summary for Columbia River at Keenleyside
 - Spill volumes substantially less for 2A-TT
 - 2A-TT produces substantially less TDG
 - 2A-TC and 2B-TC result in the higher TDG levels

Summary of TDG at Keenleyside Dam **Tailwater - Alternatives**

Number of Days Tailwater TDG

Summary of TDG at Keenleyside Dam Tailwater-Components E1, E2

Prominent increase in TDG saturation of 120% and higher for E1 and E2 compared to CC

Frequency of Exceedance of TDG
Saturation at Keenleyside Dam Tailwater

TDG%	RC-CC	E1	E2		
TDG%	(days)	(days)	(days)		
110	4866	7278	7402		
115	1487	3671	2929		
120	273	1183	596		
125	3	190	9		
130	0	30	0		
135	0	4	0		
140	0	0	0		

Headwater Projects

- Negligible TDG differences between Alternatives over study period for: Brownlee, Libby, Dworshak and Hungry Horse
 - No/minimal difference in refill/spill volumes from reservoir
 - No difference in TDG loadings
- E Components higher and lower TDG loading
 - E1 prominently higher TDG loading
 - E2 lower TDG loading at Libby Dam
 - Alternatives require spill for deeper draft of reservoir

Summary of TDG at Libby Dam Tailwater, Alternatives

Summary of TDG at Libby Dam Tailwater, Components E1, E2

All Alternative have same results at RC-CC
Note: TDG exceedance of 110% 5 times more frequent for E1 compared to CC

Frequency of Exceedance of TDG

Saturation at Libby Dam Dam Tailwater								
TDG%	RC-CC	E1	E2					
וטט%	(days)	(days)	(days)					
110	606	3275	612					
115	224	2200	70					
120	0	838	1					
125	0	47	0					
130	0	0	0					
135	0	0	0					
140	0	0	0					

Results Columbia River

- Grand Coulee Dam Critical Location
 - Spill volumes smallest on CR (large hydraulic capacity)
 - Major TDG source when spilling due to:
 - Regulating Outlet (RO) produces extremely high TDG levels
 - Drum gates produce moderate TDG levels
 - Deeper draft increases likelihood of RO operations
 - 2A-TT Alternative frequently deep draft in high flow years
 - 2B-TC Alternative with shallower draft in high flow years

Summary of Columbia River Total Flow at Grand Coulee Dam, Alternatives

Summary of Columbia River Total Flow at Grand Coulee Dam – Components E1, E2

Summary of TDG at Grand Coulee Dam Tailwater, Alternatives

Summary of TDG at Grand Coulee Dam Tailwater, Components E1, E2

Middle Columbia

Chief Joseph Dam-Critical Location

- Spill volumes influenced both by flood flows and hydropower operations (lack of load-reserves)
- Reduction in TDG levels when forebay TDG levels are high from GCL
- Resultant TDG loading
 - Higher TDG levels for 2A-TT caused by upstream TDG sources
 - Lowering of peak tailwater TDG levels compared to forebay

Summary of TDG at Chief Joseph Dam Tailwater, Alternatives

Note: Peak TDG levels

Summary of TDG at Chief Joseph Dam Tailwater, Components E1, E2

Duration of TDG greater than of 120% was increased for E1 four fold when compared to CC. Prominent contribution of high TDG loading from upstream TDG sources

Frequency of Exceedance of TDG
Saturation at Chief Joseph Dam Tailwater

TDG%	RC-CC	E1	E2		
וטט%	(days)	(days)	(days)		
110	3468	5092	4268		
115	1728	4133	2674		
120	775	3224	1746		
125	178	2347	750		
130	20	1225	129		
135	0	90	10		
140	0	3	0		

Snake River-IHR TDG Assessment

Ice Harbor

- Largest spill volume on the Snake River
- Lower TDG producer allowing high rates of spill without exceeding 120% saturation
- Hydropower operations prominent cause of spill volume differences between alternatives
 - 2B-TC resulted in highest spill volumes and TDG loading

Summary of Snake River Total Flow at Ice Harbor Dam - Alternatives

Summary of Snake River Total Flow at Ice Harbor Dam - Components

Summary of TDG at Ice Harbor Dam Tailwater, Alternatives

Summary of TDG at Ice Harbor Dam Tailwater, Components E1, E2

Component E1 had the highest number of days with TDG greater than 120% .TDG levels over 140% for E1 and E2

Frequency of Exceedance of TDG
Saturation at Ice Harbor Dam Tailwater

TDG%	RC-CC	E1	E2
TDG%	(days)	(days)	(days)
110	8926	12076	12094
115	2695	4947	4715
120	604	813	743
125	44	119	120
130	0	29	35
135	0	10	9
140	0	2	5

Lower Columbia-TDA

- The Dalles Dam Critical Location
 - Large hydraulic capacity of powerhouse
 - TDG response curve weakly related to spill discharge
 - Ratio of Δ TDG to Δ Q is small (TDG generation is not highly sensitive to spill)
 - High priority for TDG management operations

Summary of Columbia River Total Flow at The Dalles Dam

Summary of Columbia River Total Flow at The Dalles Dam

Summary of TDG at The Dalles Dam Tailwater, Alternatives

Summary of TDG at The Dalles Dam Tailwater, Components E1, E2

The increase in the number of day where TDG was greater than 120% was higher for E1 and E2 by about 700% compared to CC

Frequency of Exceedance of TDG
Saturation at The Dalles Dam Tailwater

TDG%	RC-CC	E1	E2
TDG%	(days)	(days)	(days)
110	10573	12869	12867
115	6194	10621	10662
120	1049	7516	7410
125	136	1560	994
130	0	328	141
135	0	9	5
140	0	0	0

Duration in days of tailwater TDG Saturation greater than 120% by project, Alternatives

	Duration in Days in the Project Tailwater where the TDG Saturatoin was greater than 120%, (70 year summary)												
	HKS	US/Can	GCL	CHJ	WEL	RRH	RIS	WAN	PRD	Mcn	JDA	TDA	BON
RR-CC	273	892	1139	775	1593	749	1340	725	989	873	275	1049	1312
2A-TC	410	931	1168	856	1649	843	1429	752	1015	861	282	868	1401
2B-TC	445	943	924	655	1760	927	1536	962	1174	1058	430	1029	1503
2A-TT	0	895	1638	1197	2115	1122	1799	926	1301	968	313	972	1633

Duration in days of tailwater TDG Saturation greater than 120% by project, Components E1, E2

	Duration in Days in the Project Tailwater where the TDG Saturatoin was greater than 120%, (70 year summary)												
HKS US/Can GCL CHJ WEL RRH RIS WAN PRD Mcn JDA TDA							BON						
RR-CC	273	892	1139	775	1593	749	1340	725	989	873	275	1049	1312
E1	1183	1821	3609	3224	6398	3901	9272	4002	4857	2852	1609	5094	3638
E2B	596	975	2076	1746	4660	2515	8472	3162	4248	2284	1057	5059	3090

Prominent increase in

■ RC-CC
■ E1
■ 2EB

Summary of TDG Evaluation

- TDG evaluation of Alternatives and Components E1 and E2 Operations based on 70 year simulations using HydSim daily modulated flows with SYSTDG model
 - Reduction in TDG loading at Keenleyside Dam for 2A-TT
 - Increase in TDG loading at Grand Coulee Dam for 2A-TT
 - Chief Joseph has moderating impact on TDG loading when forebay TDG levels exceed 120%
 - Higher TDG loading in Lower CR for the 2B-TC alternative

Summary of TDG Evaluation

- Headwater Projects minimal change in TDG loading for Alternatives
- Differences in TDG loading in Snake River for alternatives were small
- E1 and E2 Components resulted in prominent increases in tailwater TDG loading throughout the entire study area
 - 2 to 7 times more days above 120% for E1 compared to CC for Columbia River Dams